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Abstract

Inhibition of nitric oxide synthase (NOS) antagonizes nitrous oxide (N2O)-induced antinociception in mice. This study was conducted to

compare brain NOS activity in high responding C57BL/6 mice, low responding DBA/2 mice and S5 mice selectively bred for low

responsiveness to N2O. Exposure to 70% N2O suppressed acetic acid-induced abdominal constrictions in C57BL/6 mice but not DBA/2 or S5
mice. N2O exposure also elevated NOS activity in brains of C57BL/6 mice but not DBA/2 or S5 mice. The absence of these effects in DBA/2

or S5 mice is further support for the hypothesis that nitric oxide (NO) may play a critical role in N2O-induced antinociception in mice.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Current evidence indicates that N2O-induced antinoci-

ception in the mouse abdominal constriction model may be

secondary to stimulated neuronal release of dynorphin that

then activates n opioid receptors (Quock and Graczak, 1988;

Quock et al., 1990; Quock and Mueller, 1991; Branda et al.,

2000; Cahill et al., 2000). The activation of these opioid

receptors in the periaqueductal gray matter of the brain

(Zuniga et al., 1987; Emmanouil et al., 2004), in turn,

inhibits GABAergic neuronal influences upon descending

pain modulatory systems that involve the activation of
0091-3057/$ - see front matter D 2005 Elsevier Inc. All rights reserved.
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adrenergic receptors in the spinal cord (Sawamura et al.,

2000; Fujinaga and Maze, 2002).

Another important component of the antinociceptive

effect of N2O appears to be the gaseous neuromodulator

nitric oxide (NO). Experiments previously conducted in this

laboratory determined that inhibition of NO production in

mice reduced their sensitivity to N2O-induced antinocicep-

tion in the abdominal constriction test (McDonald et al.,

1994; Ishikawa and Quock, 2003b; Li et al., 2004). The

present study employed short-term selective breeding as a

means of further implicating NO in the mechanism of N2O-

induced antinociception.

Previous research has reported differences in the respon-

siveness of inbred mouse strains to N2O-induced antinoci-

ception in the acetic acid abdominal constriction test (Quock

et al., 1993). The C57BL/6 mouse strain demonstrated high

responsiveness to N2O, characterized by a significant

decrease in abdominal constrictions under 70% N2O. The
ehavior 81 (2005) 764 – 768
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DBA/2 mouse strain responded poorly to N2O, showing

very little change in abdominal constrictions. In a recent

preliminary report, we found that exposure to 70% N2O

caused a 40% elevation in whole brain NOS activity in

C57BL/6 mice but only a statistically insignificant 10%

increase in DBA/2 mice (Ishikawa and Quock, 2003a). The

present research shows that exposure to N2O increases NOS

enzyme activity in whole brain and cerebellum and

decreases NOS activity in the corpus striatum of C576/BL

mice but not DBA or a line of mice that was selectively bred

for low responsiveness to N2O antinociception.
2. Methods

2.1. Animals

Adult male DBA (n=15) and C57 male mice (n=14) were

obtained from the Jackson Laboratory (Bar Harbor, Maine). S5
mice (n =14) with poor responsiveness to N2O-induced

antinociception were the product of a short-term selective

breeding program similar to that described by Belknap et al.

(Belknap et al., 1997). Breeding began with low-responding

male and female mice from the F2 generation derived from

DBA and C57 progenitors (Mueller et al., 2004). Each

generation was screened for responsiveness to N2O-induced

antinociception, and themale and femalemicewith the poorest

responsiveness were mated to produce the next generation.

Breeding was ended following the F7 (or S5) generation.

These experiments were approved by an institutional

animal care and use committee and carried out in

accordance with the National Institute of Health Guide for

the Care and Use of Laboratory Animals (NIH Publication

No. 80-23, revised 1996). All measures to minimize pain or

discomfort were taken by the investigators.

2.2. Antinociceptive testing

Antinociceptive responsiveness toN2Owas assessed by the

abdominal constriction test. At 7–8 weeks of age, mice were

treated intraperitoneally with 0.6% acetic acid (0.1 ml/10 g

body weight); exactly 5 min later, the number of abdominal

constrictions—lengthwise stretches of the torso with concave

arching of the back—in each animal was counted for a 6-min

period while in a Plexiglas exposure chamber (20 cm W�35

cm L�15 cm H) open to room air. One week later, mice were

again treated with acetic acid, but this time housed in a closed

chamber containing an atmosphere of 70% N2O in oxygen

(O2). Previous studies showed that mice typically regained

their sensitivity to acetic acid-induced abdominal constrictions

within this period of time.

2.3. Delivery of nitrous oxide/oxygen

A mixture of 70% N2O, U.S.P. and 30% O2, U.S.P.

(A&L Welding, Spokane, Washington) was delivered into
the chamber at a total inflow rate of 10 l/min using a

portable N2O/O2 dental sedation system (Porter, Hatfield,

Pennsylvania). A POET II anesthetic monitoring system

(Criticare, Milwaukee, Wisconsin) was used to verify that

desired N2O/O2 concentrations had been attained.

Exhausted gas was vented to a nearby fume hood.

2.4. NOS assay

Mice were decapitated after 15 min exposure to 70%

N2O or room air (as control). The brains were quickly

removed and placed on an ice-cold Petri dish. The brain

was cut in half along the midline. One brain half was

used to determine NOS activity level per milligram

protein. The other brain half was dissected to measure

NOS activity in hippocampus, cerebellum, amygdala,

midbrain and corpus striatum. All samples were immedi-

ately frozen in liquid nitrogen and stored at �80 -C until

analyzed.

NOS activity was assayed by measuring the Ca2+-

dependent conversion of [14C]l-arginine to [14C]l-citrul-

line (Huang et al., 1993). On the day of the assay, tissue

samples were sonicated in 10 volumes (wt/vol) of 50 mM

TrisIHCl (pH 7.4) buffer containing 1.0 mM ethylenedi-

amine tetraacetic acid (EDTA) and 1.0 mM ethyleneglycol

tetraacetic acid (EGTA) (homogenization buffer). After

centrifugation (12,000 rpm for 20 min at 4 -C), 20 Al
supernatant was added to 40 Al 50 mM TrisIHCl (pH 7.4)

buffer containing 1.0 mM NADPH, 3.0 AM BH4, 1.0 AM
FAD, 1.0 AM FMN, 1.25 mM CaCl2, and 1.25 ACi/ml

[14C]l-arginine (specific activity: 348 mCi/mmol, Amer-

sham Biosciences, Piscataway, New Jersey) and incubated

for 30 min at 37 -C. The reaction was terminated by

addition of 400 Al stop buffer containing 50 mM HEPES

(pH 5.5) and 5.0 mM EDTA. Then the reaction mixture

was applied onto a chromatographic column containing 40

mg Dowex AG50WX-8 resin (Bio-Rad, Hercules, Cal-

ifornia) for separation of [14C]l-citrulline from the

unreacted [14C]l-arginine by cation-exchange chromatog-

raphy and collected into a scintillation vial. Thereafter, the

samples were counted for the amount of radioactivity using

a model A2500 liquid scintillation counter (Packard

Instrument Company, Meriden, Connecticut). The protein

content of the supernatant was determined using the

bicinchoninic acid (BCA) method and a commercially

available assay kit (Pierce Chemical Company, Rockford,

Illinois) with bovine albumin as a standard. NOS enzyme

activity was expressed in terms of picomole per milligram

protein per minute.

2.5. Statistical analysis of data

The responsiveness of each strain to 70% N2O was

determined by Dunnett’s t-test. Differences in NOS activity

levels of N2O- and room air-exposed animals were analyzed

by paired Student’s t-test.
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3. Results

When exposed to room air, C57BL/6 mice exhibited

10.0T1.6 (meanTS.E.M.) abdominal constrictions over 6

min. One week later, when exposed to 70% N2O, these mice

exhibited 2.8T0.8 abdominal constrictions over the same

time resulting in a 72.4T7.1% antinociceptive response. By

comparison, DBA/2 mice exhibited 7.0T1.1 abdominal

constrictions under room air and 6.4T1.2 abdominal

constrictions under N2O (8.6 T17.4% antinociceptive

response), and S5 mice strains responded with 7.9T1.4
abdominal constrictions under room air and 8.2T1.7
abdominal constrictions under N2O (�3.6T20.7% antino-

ciceptive response) (Fig. 1).

Exposure to 70% N2O resulted in significant increases

in NOS activity in whole brains and cerebella of C57BL/6

mice compared to activity levels in room air-exposed mice.

NOS activity in the corpus striatum of C57BL/6 was

reduced by 70% N2O, while NOS activities in the

midbrain and hippocampus were not significantly different

between room air and 70% N2O (Fig. 2). Results showed

that N2O exposure did not increase NOS activity in either

whole brain or regional brain of DBA/2 or S5 mice. On the

contrary, S5 mice exhibited a decrease in NOS activity in

whole brain and all brain regions examined, excluding the

brainstem.
Fig. 2. Effects of N2O exposure on NOS activity in C57BL/6 (C57), DBA/2

(DBA) and S5 mice. Abbreviations: WB, whole brain; CC, cerebral cortex;

BS, brainstem; CS, corpus striatum; HIP, hippocampus; CB, cerebellum.
4. Discussion

To our knowledge, there has been only one earlier series

of studies involving selective breeding of mice for differ-

ences in sensitivity to N2O. Mice were bred through ten

generations to produce offspring that were highly suscep-

tible or highly resistant to N2O anesthesia (as determined by

loss of the righting reflex) (Koblin et al., 1980). Animals

that were highly resistant to N2O were cross-resistant to

other inhalation anesthetics and to ethanol as well (Koblin et

al., 1982a), were more susceptible to barbiturate-induced

hypnosis (Koblin et al., 1984), although N2O-resistant mice
Fig. 1. N2O-induced suppression of acetic acid abdominal constrictions in

C57BL/6 (C57), DBA/2 (DBA) and S5 mice. See text for calculation of %

antinociception. Significance of difference: TTp <0.01, compared to

C57BL/6 mice (Dunnett’s t-test).

Significance of difference: *p <0.05, compared to room air control of the

same strain (paired t-test).
were more susceptible to convulsant drugs (Koblin et al.,

1982b). The difference in ED50 values for anesthesia

between N2O-susceptible and resistant mice appeared to

be inversely related to the lipid solubility of the anesthetic,

i.e., very small difference between the mice for highly lipid-

soluble anesthetics and very large difference between the

mice for poorly lipid-soluble anesthetics (Koblin et al.,

1982a). In contrast, another measure of anesthesia (respon-

siveness to tail-clamp pinch)—which, in all likelihood,

reflects antinociception rather than anesthesia—showed a

comparable separation in ED50 values for each of the

anesthetics tested in both N2O-susceptible and -resistant

mice (Koblin et al., 1982a).
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Previous research has demonstrated that N2O-induced

antinociception in mice and rats is NO-dependent. Pretreat-

ment of mice with the NOS-inhibitors l-NG-nitro arginine

(l-NOARG), l-NG-nitro arginine methyl ester (l-NAME)

and l-NG-monomethyl nitro arginine (l-NMMA) all

resulted in marked attenuation of the antinociceptive

response of mice to N2O in the abdominal constriction test

(McDonald et al., 1994). A subsequent study reported that

N2O-induced antinociception was also sensitive to antago-

nism by S-methyl-l-thiocitrulline (SMTC), a putatively

selective inhibitor of neuronal NOS, and also by higher

doses of l-N5-(1-iminoethyl)ornithine (l-NIO), which is

approximately 8-fold more potent against eNOS than nNOS

and 4-fold more potent against eNOS than iNOS (Rees et

al., 1990; McCall et al., 1991) but has been shown to lose

the selectivity at higher doses (Li et al., 2003). Pretreatment

with 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine

(AMT), which selectively inhibits inducible NOS, was

ineffective in antagonizing N2O-induced antinociception. In

the rat hot plate test, the antinociceptive response to 70%

N2O was antagonized in dose-related manner by i.c.v.

pretreatment with l-NOARG or l-NAME; this antagonism

was again reversed by l-arginine but not d-arginine

(McDonald et al., 1994).

Based on the above observations, we have suggested that

stimulated neuronal release of endogenous opioid peptides

may be an NO-dependent process (Hara et al., 1995). NO

targets the metal centers of metalloenzymes (Bredt, 1996),

of which the best characterized is soluble guanylyl cyclase

(sGC). This enzyme may regulate the neuronal release of

opioid peptide.

Previous research has reported differences in the respon-

siveness of inbred mouse strains to N2O-induced antinoci-

ception in the acetic acid abdominal constriction test (Quock

et al., 1993). The C57BL/6 mouse strain demonstrated high

responsiveness to N2O, characterized by a significant

decrease in abdominal constrictions under 70% N2O. The

DBA/2 mouse strain responded poorly to N2O, showing

very little change in abdominal constrictions. In a recent

preliminary report, we found that exposure to 70% N2O

caused a 40% elevation in whole brain NOS activity in

C57BL/6 mice but only a statistically insignificant 10%

increase in DBA/2 mice (Ishikawa and Quock, 2003a). The

present research shows that exposure to N2O increases NOS

enzyme activity in whole brain and cerebellum and

decreases NOS activity in the corpus striatum of C576/BL

mice; however, there were no changes in NOS activity in

DBA mice and significant decreases in whole brain and

regional brain levels of NOS activity in S5 mice.

Previous pharmacogenetic studies from our laboratory

have identified quantitative trait loci (QTL) or are regions of

the genome containing genes that are highly associated with

responsiveness to N2O-induced antinociception (Quock et

al., 1996). One significant QTL was located on proximal

Chromosome 2 near the marker D2Mit91 ( p =5�10�5),

and the other was located on distal Chromosome 5 near
D5Mit409 ( p =1.3�10�4). It is worth noting that our

Chromosome 5 QTL maps close to Nos1 on Chromosome 5

(65 cM), which is the gene that encodes neuronal NOS

(www.informatics.jax.org). This QTL has a peak LOD at 84

cM, but the confidence interval clearly encompasses the

Nos1 locus. While these findings pertain specifically to

N2O-induced antinociception, they are in general agreement

with the claim that genetic control of resistance or

susceptibility to N2O anesthesia probably involves multiple

genes (Koblin and Eger, 1981).

In the present study, C57BL/6 mice responded to N2O

with antinociception and increased NOS activity, while

DBA/2 and S5 mice responded to N2O with poor anti-

nociception and no change or a slight reduction in NOS. The

co-segregation of the traits for poor antinociception and

failure to elevate NOS activity is further evidence of a

possible correlation between elevation in NOS activity in

response to N2O and an antinociceptive response to N2O.
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